
Spin of the ground state

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1989 J. Phys. A: Math. Gen. 22 L593

(http://iopscience.iop.org/0305-4470/22/13/010)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 01/06/2010 at 06:44

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/22/13
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 22 (1989) L593-L596. hin ted  in the UK 

LE’ITER TO THE EDITOR 

Spin of the ground state 
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Departamento de Fisica Tebrica, Universidad Complutense de Madrid, 28040 Madrid, 
Spain 

Received 3 May 1989 

Abstract. The following theorem is proved. The spin Jg of the ground state of a system 
of any two particles of spins s I ,  s2 interacting through rotationally invariant but otherwise 
arbitrarily spin-dependent potentials fulfils the inequality J 8 s  sI + s2. 

The non-degeneracy of the ground state ( G S )  of two-body systems with spinless particles 
follows from the classical Perron-Frobenius argument and the positivity improving 
property of the dynamical semigroup exp( - t H ) ,  H := -A + V, t > 0, for quite general 
potentials V [l]. Nevertheless, the simplicity of the ground energy may be lost for 
spinning particles; recall, for instance, that the deuteron has multiplicity three. The 
question was recently addressed [2] as to which possible values may be taken on by 
the GS intrinsic total angular momentum and the degeneracy for rotationally invariant 
systems of two particles with spins s1 , s2. The analysis therein was limited to the cases 
si d i, i = 1,2. The present paper removes this restriction and a proof is provided of 
the following theorem. The spin (i.e. intrinsic total angular momentum) Jg of the GS 

of a system of any two particles of spins s, , s2 interacting through rotationally invariant 
but otherwise arbitrarily spin-dependent potentials fulfils the inequality Jg s sI + s2. 

The Hilbert space &9 of the state vectors for the relative motion of two elementary 
particles of spins sl, s2 is of the form [3,4] 

X =  L2(R+, d r ) @ X  x:= L * ( S ~ ,  (4T)-1 d n ) @ c  N ( s ~ ~ S 2 )  (1) 

where S2  stands for the unit 2-sphere with normalised measure (47r-I dR and 
N(sl, s2) := (2s, + 1)(2s2+ 1). The (reduced) radial part of the wavefunction lies in the 
first factor L2(R+, dr )  of 38, whereas its dependence on the angular variables and third 
components of spin is respectively reflected in the two factors of X. 

The (universal covering SU(2) of the) rotation group acts unitarily in X. This 
representation SU(2) 3 AH U(A) decomposes into a direct sum of irreducible actions 
DJ( A): 

where jmin := 0 if s1 + s2 E Z, and jmin := 5 otherwise. The multiplicity p j ( s I ,  s2) of D’ is 
given by 

where SI and S2 are the spin operators of the intervening particles. The sum in (3)  
runs over all possible values of the total spin, the symbol s E SI + S2 indicating that D” 
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enters the Clebsch-Gordan series of Dst10Ds2. The subspaces Xj on which the 
p j ( s I ,  s2)D' act have dimension (2j+ l )p j ( s I ,  s2). Associated with (2) we thus have a 
decomposition 

into subspaces Zj of total angular momentum J := L +  S ( S  := SI + S,)  equal to j .  
Let H be the self-adjoint Hamiltonian which generates the inner dynamics of our 

system. The space isotropy allows one to assume H to be invariant under rotations. 
Therefore the spaces Xj  are dynamically invariant and so will be their subspaces Xj,,, 
with m = -j, - j+ 1, . . . , j  - 1,j for J,. We shall denote by Xj,,, the factor space of Xj,,, 
associated with the angular and spin variables. For a given j ,  the (2j + 1) restrictions 
Hj,,, of H to Xj,,, are all unitarily equivalent to each other. 

We will suppose H of the form H = - A +  V in appropriate units, where V is -a 
self-adjoint potential N (  s1 , s2 )  x N (  s1 , s2) matrix, invariant under rotations (i.e. under 
the action j$+ U@ U ( A )  dr)  and with entries, say, in L3I2(R3) + L"(R3), to ensure a good 
quantum dynamics [5]. Let PH denote the spectral family of H. The existence of a 
discrete ground level E,:= inf U (  H )  E mdiSc(H) will be taken for granted. Finally Jg 
will stand for the greatest of all angular momenta in the subspace Zg:= PH({E,})X 
spanned by all the G S .  

The familiar techniques [6] of the angular momentum formalism allow any of the 
above-mentioned potential matrices to be written as 

v 1112/  ( ~ ) : = i ' ~ + f ~ " ~ ( - l ) ' - m ( 2 ~ + 1 ) - ' ' 2 ~ ( t l ,  t 2 ,  I ;  M I ,  m 2 , m )  

x Y l m ( n ) T ( l ) ~ , O  T(2)2, ( 6 )  

where n is the unit vector along r. The summation in ( 5 )  runs over all t l  , f , ,  1 such 
that t ,  E S,  + SI,  t2 E S2+ S 2 ,  I E t ,  + t , ,  whereas that in (6) ranges through all possible 
values of m, m , ,  m2 .  T( l ) h l  and T(2)2, are the following irreducible tensor operators 
with angular momenta t ,  , t2 and third components m ,  , m 2 ,  which act in the spin spaces 
of the particles 1,2, respectively: 

T (  i )  & := [ ( t  + m) !/(2t) ! ( t - m) !]'"C::"S:+ 

S,* := S,, * i S,, 

(7)  

(8) 

The operator T(1)hl@T(2)2, in ( 6 )  is properly coupled to the spherical harmonic 
YLm(n)  to produce a rotationally invariant operator V,,,, ,(a) in X. The number 
M ( s , ,  s2) of such basic VlI l2 , (n)  is 

C,-A := [ S , _ ,  A ] .  

M ( s , ,  s J = z  (2min(t , ,  t2)+1)=a,[a,(3cr,-a,)+l]/3 (9) 

with U, := min(2s, + 1, 2s2+ l ) ,  U, := max(2sI + 1, 2s2+ 1). Thus, M ( 0 ,  f )  = 2, M ( 0 ,  1) = 
3, M(4,4)=6, M(4,1)=10, M( l ,1 )=19 ,  etc. 

The matrix elements of Vlll,,(fk) in the physically natural orthonormal basis IsLjm) 
of which diagonalises ( S  := SI + S2)2, L2, J2, J, are explicitly computable in terms 
of Clebsch-Gordan, Racah and Rosen coefficients, but their dependence in J is buried 
in a Racah W coefficient and this makes the spectral comparison between the different 
Hamiltonians H,,m look formidable. Hence the interest in an alternative analysis. 
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Given a rotation R, the action of SU(2) unitarily transforms the rotationally invariant 
matrix V(r) into V ( R r ) .  Therefore, the spectral decomposition of V(r) will be of the 
form 

where P,,(r)  are, for a fixed r, mutually orthogonal projections of rank 1. Being 
polynomials in V(r), the matrices P,,(r) inherit the rotational invariance of V(r), and 
thus are determined by P,,( re3), e3:= (0, 0, 1). These projections P,,(re3) must commute 
with the generator S, := S1, + SZr of the little group (or stabiliser) of re3 ; the cardinal 
of a maximal orthogonal system of such projections is precisely M(sl ,  s 2 ) .  

The analysis via (10) of the matrix elements of V( rn), r fixed, in X J  suggests the 
convenience of introducing the following orthonormal basis of X J  : 

(11) 

whereME{-J,-J+l ,  . . . ,  J - 1 , J } , s ~ { ~ s r - s 2 ~ , ~ s l - s 2 ~ + 1  ,..., s,+s2},andm,either 
integer or half-integer as s, satisfies Imj d min(s, J ) .  The peculiarity of this strange and 
unexpected basis lies in the fact that the matrix representing the operator VtI,Ji2) in 
such a basis depends trivially on J. That is: 

I J ;  smM):= C (-l)LC(sJL; -mmO)lsWM) 
L 

( J ;  f2m2M2I Vt,t,,lJ; S,m,M,)  = 8 M 2 M , { 5 2 ~ 2 1  V,,,,,ISlml} (12) 

with 

(f2m2l Vt,,,f[Slml} 

(2J, + 1)1’2(252+ 1)1/2f(s,s2tlf2) f+i ,+212+m, 
:= 4n2m,( -1 )  

x C(SlS21; ml-m,0)X(s ls2S, :  sls2S2: tlt21)  (13) 

x[(2s1-t,)!(2t,)!(2s,-  t2 ) ! (212) ! ] -?  (14) 

f ( s , s z t l t z )  := [(2s, + t ,  + l ) ! ( t l  !)2(2s2+ t 2 +  I)! ( r2!)2]1/2 

This essential independence of J will render straightforward the comparison between 
different H,,,,,. The simplicity of L2 in this basis is also helpful: 

( J ;  ~ i m i M i )  = 8.w2M18sli2B(J9 J1)m2m1 (15) 

B(J, [J (J+1)+Sl (S ,+ l ) -2m~]Sm, , ,  

+ [(J - m , ) ( J +  m1+ 1 ) ( ~ 1 -  ml)(zl  + m1+ 1)11’28m2.m,+l 

+ [ ( J + m , ) ( J -  m i +  I)(s,+ m l ) ( i ,  - m , +  1 ) ] ” ~ 8 ~ ~ , , , - , .  (16) 
With the previous notation we claim the following results. 

Lemma 1. The matrices B(J,  5 )  (16) appearing in the representation of L2 in the basis 
(1 1) of X, are strictly increasing operator-valued functions of J for J 3 s1 + s2.  

Proof: Note first that for J 2 s, + s2 all these matrices are of the same order (25+ 1). 
We must prove that A(J, S) := B ( J +  1, S) - B(J,  S) > 0. But it is easy to convince oneself 
that if a self-adjoint matrix A satisfies Aii > Zj , i  IAijl, Vi, then A > 0. (Just take into 
account that if lzkl = max{lz,l, V i ) ,  then I;, z?A,z, L Izk12(Akk-I;jiZk IAki().) In our case 
(A := Jacobi matrix A(J, 5 ) )  it is quite simple to check the fulfillment of such inequalities. 

0 
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Lemma 2. Up to unitary equivalence, the partial Hamiltonians JJ,M also increase 
strictly with J for J 2 s, + s2 .  

Pro05 Since all partial Hamiltonians with the same J are unitarily equivalent, it will 
suffice to prove the lemma for the subfamily H, := H,,,mln. For J1 , J2 2 s, + s 2 ,  define 
an isometric bijection T ( J ,  +- J 2 )  := 0 0  t ( J 1  + J 2 ) :  XJl,,m,m+ XJ2,,m,n by the identity on 
the radial factor and such that t ( J ,  +- J2))J1 ; smjmin) = 1J2; smjmi,) (note that both 
dimensions pII(s1, s2) ,  p J 2 ( s l ,  s2) of XJl,,mln and XJ2,,mxn equal N ( s , ,  s2)). And now let 
I?, := T(J + s1 + s,)H,T( s1 + s2 -+ J ) .  We claim that J2 > J ,  + fl,2 > H,, . In fact, remem- 
bering [3,4] that H = p?(  := -a2/ar2) + L2r-2+ V(r) for (1) and using ( 5 ) ,  (12), ( 1 9 ,  
the expectation value of ffJ in the state unit vector 

@:= CLm(r)Is1+ 3 2 ;  s m j m i n > E  Xsl+sZ, ,m,n n D(IHI"2) (17) 
sm 

f 

By fs(r)  we abbreviate in (20) the vector in C2'+' with components Jlm(r). 
0 

Theorem. Let E,  := inf a( H )  E vdisc( H), X, := PH ({ E,})X be the ground energy and 
the associated eigensubspace for a quantum system consisting of two particles with 
spins s, , s2 interacting through a rotationally invariant potential matrix. Then X , c  
$ j s s , + s 2  X j ,  i.e. the maximum intrinsic total angular momentum Jg of this system in 
any of its ground states satisfies Jg 
Pro05 It is a clear consequence of lemma 2 that the lowest point &,J := inf v ( H  I X J )  
in the spectrum of the restriction of H to XJ is a function strictly increasing with J 

0 
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In view of lemma 1, and using (18)-(21), lemma 2 is now evident. 

s, + s2.  

for J 3 s, + s2 .  And as E,  = inf, & , J ,  the conclusion plainly follows. 
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