Spin of the ground state

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1989 J. Phys. A: Math. Gen. 22 L593
(http://iopscience.iop.org/0305-4470/22/13/010)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 01/06/2010 at 06:44

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Spin of the ground state

A Galindo
Departamento de Fisica Térica, Universidad Complutense de Madrid, 28040 Madrid, Spain

Received 3 May 1989

Abstract

The following theorem is proved. The spin J_{g} of the ground state of a system of any two particles of spins s_{1}, s_{2} interacting through rotationally invariant but otherwise arbitrarily spin-dependent potentials fulfils the inequality $J_{\mathrm{g}} \leqslant s_{1}+s_{2}$.

The non-degeneracy of the ground state (Gs) of two-body systems with spinless particles follows from the classical Perron-Frobenius argument and the positivity improving property of the dynamical semigroup $\exp (-t H), H:=-\Delta+V, t>0$, for quite general potentials V [1]. Nevertheless, the simplicity of the ground energy may be lost for spinning particles; recall, for instance, that the deuteron has multiplicity three. The question was recently addressed [2] as to which possible values may be taken on by the GS intrinsic total angular momentum and the degeneracy for rotationally invariant systems of two particles with spins s_{1}, s_{2}. The analysis therein was limited to the cases $s_{i} \leqslant \frac{1}{2}, i=1,2$. The present paper removes this restriction and a proof is provided of the following theorem. The spin (i.e. intrinsic total angular momentum) J_{g} of the GS of a system of any two particles of spins s_{1}, s_{2} interacting through rotationally invariant but otherwise arbitrarily spin-dependent potentials fulfils the inequality $J_{\mathrm{g}} \leqslant s_{1}+s_{2}$.

The Hilbert space \mathscr{H} of the state vectors for the relative motion of two elementary particles of spins s_{1}, s_{2} is of the form [3,4]

$$
\begin{equation*}
\mathscr{H}=L^{2}\left(\mathbb{R}^{+}, \mathrm{d} r\right) \otimes \mathscr{K} \quad \mathscr{K}:=L^{2}\left(S^{2},(4 \pi)^{-1} \mathrm{~d} \Omega\right) \otimes \mathbb{C}^{N\left(s_{1}, s_{2}\right)} \tag{1}
\end{equation*}
$$

where S^{2} stands for the unit 2 -sphere with normalised measure $(4 \pi)^{-1} \mathrm{~d} \Omega$ and $N\left(s_{1}, s_{2}\right):=\left(2 s_{1}+1\right)\left(2 s_{2}+1\right)$. The (reduced) radial part of the wavefunction lies in the first factor $L^{2}\left(\mathbb{R}^{+}, \mathrm{d} r\right)$ of \mathscr{H}, whereas its dependence on the angular variables and third components of spin is respectively reflected in the two factors of \mathscr{K}.

The (universal covering $\mathrm{SU}(2)$ of the) rotation group acts unitarily in \mathscr{K}. This representation $\mathrm{SU}(2) \ni A \mapsto \mathrm{U}(A)$ decomposes into a direct sum of irreducible actions $D^{j}(A)$:

$$
\begin{equation*}
U=\bigoplus_{j \in j_{\text {min }}+\mathbf{Z}^{+}} \mu_{j}\left(s_{1}, s_{2}\right) D^{j} \tag{2}
\end{equation*}
$$

where $j_{\text {min }}:=0$ if $s_{1}+s_{2} \in \mathbb{Z}$, and $j_{\text {min }}:=\frac{1}{2}$ otherwise. The multiplicity $\mu_{j}\left(s_{1}, s_{2}\right)$ of D^{j} is given by

$$
\begin{equation*}
\mu_{j}\left(s_{1}, s_{2}\right)=\sum_{s \in S_{1}+S_{2}}[2 \min (j, s)+1] \tag{3}
\end{equation*}
$$

where S_{1} and S_{2} are the spin operators of the intervening particles. The sum in (3) runs over all possible values of the total spin, the symbol $s \in S_{1}+S_{2}$ indicating that D^{s}
enters the Clebsch-Gordan series of $D^{s_{1}} \otimes D^{s_{2}}$. The subspaces \mathscr{K}_{j} on which the $\mu_{j}\left(s_{1}, s_{2}\right) D^{j}$ act have dimension $(2 j+1) \mu_{j}\left(s_{1}, s_{2}\right)$. Associated with (2) we thus have a decomposition

$$
\begin{equation*}
\mathscr{H}=\bigoplus_{j \in j_{\min }+\mathbb{Z}^{+}} \mathscr{H}_{j}:=\bigoplus_{j \in j_{\min }+\mathbb{Z}^{+}} L^{2}\left(\mathbb{B}^{+}, \mathrm{d} r\right) \otimes \mathscr{K}_{j} \tag{4}
\end{equation*}
$$

into subspaces \mathscr{H}_{j} of total angular momentum $J:=L+S\left(S:=S_{1}+S_{2}\right)$ equal to j.
Let H be the self-adjoint Hamiltonian which generates the inner dynamics of our system. The space isotropy allows one to assume H to be invariant under rotations. Therefore the spaces \mathscr{H}_{j} are dynamically invariant and so will be their subspaces $\mathscr{H}_{j, m}$ with $m=-j,-j+1, \ldots, j-1, j$ for J_{z}. We shall denote by $\mathscr{K}_{j, m}$ the factor space of $\mathscr{H}_{j, m}$ associated with the angular and spin variables. For a given j, the $(2 j+1)$ restrictions $H_{j, m}$ of H to $\mathscr{H}_{j, m}$ are all unitarily equivalent to each other.

We will suppose H of the form $H=-\Delta+V$ in appropriate units, where V is a self-adjoint potential $N\left(s_{1}, s_{2}\right) \times N\left(s_{1}, s_{2}\right)$ matrix, invariant under rotations (i.e. under the action $\left.\int_{\mathbb{R}^{+}}^{\oplus^{+}} \mathbb{1} \otimes U(A) \mathrm{d} r\right)$ and with entries, say, in $L^{3 / 2}\left(\mathbb{R}^{3}\right)+L^{\infty}\left(\mathbb{R}^{3}\right)$, to ensure a good quantum dynamics [5]. Let P_{H} denote the spectral family of H. The existence of a discrete ground level $E_{g}:=\inf \sigma(H) \in \sigma_{\text {disc }}(H)$ will be taken for granted. Finally J_{g} will stand for the greatest of all angular momenta in the subspace $\mathscr{H}_{\mathrm{g}}:=P_{H}\left(\left\{E_{\mathrm{g}}\right\}\right) \mathscr{H}$ spanned by all the Gs.

The familiar techniques [6] of the angular momentum formalism allow any of the above-mentioned potential matrices to be written as

$$
\begin{align*}
& V(\boldsymbol{r})=\sum_{t_{1} t_{2} l} v_{t_{1} t_{2} l}(r) V_{t_{1} t_{2} l}(\boldsymbol{\Omega}) \tag{5}\\
& \begin{array}{l}
V_{t_{1} t_{2} l}(\boldsymbol{\Omega}):=\mathrm{i}^{t_{1}+t_{2}+l} \sum(-1)^{l-m}(2 l+1)^{-1 / 2} C\left(t_{1}, t_{2}, l ; m_{1}, m_{2}, m\right) \\
\quad \times Y_{-m}^{\prime}(\boldsymbol{\Omega}) T(1)_{m_{1}}^{t_{1}} \otimes T(2)_{m_{2}}^{t_{2}}
\end{array}
\end{align*}
$$

where $\boldsymbol{\Omega}$ is the unit vector along r. The summation in (5) runs over all t_{1}, t_{2}, l such that $t_{1} \in S_{1}+S_{1}, t_{2} \in S_{2}+S_{2}, l \in t_{1}+t_{2}$, whereas that in (6) ranges through all possible values of $m, m_{1}, m_{2} . T(1)_{m_{1}}^{t_{1}}$ and $T(2)_{m_{2}}^{t_{2}}$ are the following irreducible tensor operators with angular momenta t_{1}, t_{2} and third components m_{1}, m_{2}, which act in the spin spaces of the particles 1,2 , respectively:

$$
\begin{align*}
& T(i)_{m}^{t}:=[(t+m)!/(2 t)!(t-m)!]^{1 / 2} C_{i_{-}}^{t-m} S_{i_{+}}^{t} \tag{7}\\
& S_{i_{ \pm}}:=S_{i x} \pm i S_{i y} \quad C_{i_{-}} A:=\left[S_{i_{-}}, A\right] . \tag{8}
\end{align*}
$$

The operator $T(1)_{m_{1}}^{t_{1}} \otimes T(2)_{m_{2}}^{t_{2}}$ in (6) is properly coupled to the spherical harmonic $Y_{-m}^{\prime}(\boldsymbol{\Omega})$ to produce a rotationally invariant operator $V_{t_{1} t_{2}(\boldsymbol{\Omega})}$ in \mathscr{K}. The number $M\left(s_{1}, s_{2}\right)$ of such basic $V_{t_{1} t_{2} l}(\Omega)$ is

$$
\begin{equation*}
M\left(s_{1}, s_{2}\right)=\sum\left(2 \min \left(t_{1}, t_{2}\right)+1\right)=\sigma_{<}\left[\sigma_{<}\left(3 \sigma_{>}-\sigma_{<}\right)+1\right] / 3 \tag{9}
\end{equation*}
$$

with $\sigma_{<}:=\min \left(2 s_{1}+1,2 s_{2}+1\right), \sigma_{>}:=\max \left(2 s_{1}+1,2 s_{2}+1\right)$. Thus, $M\left(0, \frac{1}{2}\right)=2, M(0,1)=$ $3, M\left(\frac{1}{2}, \frac{1}{2}\right)=6, M\left(\frac{1}{2}, 1\right)=10, M(1,1)=19$, etc.

The matrix elements of $V_{t_{1} t_{2} l}(\Omega)$ in the physically natural orthonormal basis $|s L j m\rangle$ of \mathscr{K}_{j} which diagonalises $\left(S:=S_{1}+S_{2}\right)^{2}, L^{2}, J^{2}, J_{2}$ are explicitly computable in terms of Clebsch-Gordan, Racah and Rosen coefficients, but their dependence in j is buried in a Racah W coefficient and this makes the spectral comparison between the different Hamiltonians $H_{j, m}$ look formidable. Hence the interest in an alternative analysis.

Given a rotation R, the action of $\mathrm{SU}(2)$ unitarily transforms the rotationally invariant matrix $V(r)$ into $V(R r)$. Therefore, the spectral decomposition of $V(r)$ will be of the form

$$
\begin{equation*}
V(\boldsymbol{r})=\sum_{1 \leqslant n \leqslant N\left(s_{1}, s_{2}\right)} v_{n}(\boldsymbol{r}) P_{n}(\boldsymbol{r}) \tag{10}
\end{equation*}
$$

where $P_{n}(r)$ are, for a fixed r, mutually orthogonal projections of rank 1 . Being polynomials in $V(\boldsymbol{r})$, the matrices $P_{n}(\boldsymbol{r})$ inherit the rotational invariance of $V(\boldsymbol{r})$, and thus are determined by $P_{n}\left(r e_{3}\right), e_{3}:=(0,0,1)$. These projections $P_{n}\left(r e_{3}\right)$ must commute with the generator $S_{z}:=S_{1 z}+S_{2 z}$ of the little group (or stabiliser) of $r e_{3}$; the cardinal of a maximal orthogonal system of such projections is precisely $M\left(s_{1}, s_{2}\right)$.

The analysis via (10) of the matrix elements of $V(r \boldsymbol{\Omega}), r$ fixed, in \mathscr{K}_{J} suggests the convenience of introducing the following orthonormal basis of \mathscr{K}_{J} :

$$
\begin{equation*}
|J ; s m M\rangle:=\sum_{L}(-1)^{L} C(s J L ;-m m 0)|s L J M\rangle \tag{11}
\end{equation*}
$$

where $M \in\{-J,-J+1, \ldots, J-1, J\}, s \in\left\{\left|s_{1}-s_{2}\right|,\left|s_{1}-s_{2}\right|+1, \ldots, s_{1}+s_{2}\right\}$, and m, either integer or half-integer as s, satisfies $|m| \leqslant \min (s, J)$. The peculiarity of this strange and unexpected basis lies in the fact that the matrix representing the operator $V_{t_{1} t_{2}}(\boldsymbol{\Omega})$ in such a basis depends trivially on J. That is:

$$
\begin{equation*}
\left\langle J ; \bar{s}_{2} m_{2} M_{2}\right| V_{t_{1} t_{2} 2}\left|J ; \bar{s}_{1} m_{1} M_{1}\right\rangle=\delta_{M_{2} M_{1}}\left\{\bar{s}_{2} m_{2}\left|V_{t_{1} t_{2} \mid}\right| \bar{s}_{1} m_{1}\right\} \tag{12}
\end{equation*}
$$

with

$$
\begin{align*}
&\left\{\bar{s}_{2} m_{2} \mid V_{t_{1} t_{2}}\left[\bar{s}_{1} m_{1}\right\}\right. \\
&:= \delta_{m_{2} m_{1}}(-1)^{l+\bar{s}_{1}+2 \bar{s}_{2}+m_{1}}\left(2 \bar{s}_{1}+1\right)^{1 / 2}\left(2 \bar{s}_{2}+1\right)^{1 / 2} f\left(s_{1} s_{2} t_{1} t_{2}\right) \\
& \times C\left(\bar{s}_{1} \bar{s}_{2} l ; m_{1}-m_{1} 0\right) X\left(s_{1} s_{2} \bar{s}_{1}: s_{1} s_{2} \bar{s}_{2}: t_{1} t_{2} l\right) \tag{13}\\
& f\left(s_{1} s_{2} t_{1} t_{2}\right):= {\left[\left(2 s_{1}+t_{1}+1\right)!\left(t_{1}!\right)^{2}\left(2 s_{2}+t_{2}+1\right)!\left(t_{2}!\right)^{2}\right]^{1 / 2} } \\
& \times\left[\left(2 s_{1}-t_{1}\right)!\left(2 t_{1}\right)!\left(2 s_{2}-t_{2}\right)!\left(2 t_{2}\right)!\right]^{-1 / 2} \tag{14}
\end{align*}
$$

This essential independence of J will render straightforward the comparison between different $H_{J, M}$. The simplicity of L^{2} in this basis is also helpful:

$$
\begin{align*}
&\left\langle J ; \bar{s}_{2} m_{2} M_{2}\right| L^{2}\left|J ; \bar{s}_{1} m_{1} M_{1}\right\rangle=\delta_{M_{2} M_{1}} \delta_{\bar{s}_{1} \bar{s}_{2}} B\left(J, \bar{s}_{1}\right)_{m_{2} m_{1}} \tag{15}\\
& B\left(J, \bar{s}_{1}\right)_{m_{2} m_{1}}:= {\left[J(J+1)+\bar{s}_{1}\left(\bar{s}_{1}+1\right)-2 m_{1}^{2}\right] \delta_{m_{2} m_{1}} } \\
&+\left[\left(J-m_{1}\right)\left(J+m_{1}+1\right)\left(\bar{s}_{1}-m_{1}\right)\left(\bar{s}_{1}+m_{1}+1\right)\right]^{1 / 2} \delta_{m_{2}, m_{1}+1} \\
&+\left[\left(J+m_{1}\right)\left(J-m_{1}+1\right)\left(\bar{s}_{1}+m_{1}\right)\left(\bar{s}_{1}-m_{1}+1\right)\right]^{1 / 2} \delta_{m_{2}, m_{1}-1} \tag{16}
\end{align*}
$$

With the previous notation we claim the following results.
Lemma 1. The matrices $B(J, \bar{s})(16)$ appearing in the representation of L^{2} in the basis (11) of \mathscr{K}_{3} are strictly increasing operator-valued functions of J for $J \geqslant s_{1}+s_{2}$.

Proof. Note first that for $J \geqslant s_{1}+s_{2}$ all these matrices are of the same order ($2 \bar{s}+1$). We must prove that $\Delta(J, \bar{s}):=B(J+1, \bar{s})-B(J, \bar{s})>0$. But it is easy to convince oneself that if a self-adjoint matrix A satisfies $A_{i i}>\Sigma_{j \neq i}\left|A_{i j}\right|, \forall i$, then $A>0$. (Just take into account that if $\left|z_{k}\right|=\max \left\{\left|z_{i}\right|, \forall i\right\}$, then $\Sigma_{i j} z_{i}^{*} A_{i j} z_{j} \geqslant\left|z_{k}\right|^{2}\left(A_{k k}-\Sigma_{i \neq k}\left|A_{k i}\right|\right)$.) In our case ($A:=$ Jacobi matrix $\Delta(J, \bar{s})$) it is quite simple to check the fulfillment of such inequalities.

Lemma 2. Up to unitary equivalence, the partial Hamiltonians $J_{J, M}$ also increase strictly with J for $J \geqslant s_{1}+s_{2}$.

Proof. Since all partial Hamiltonians with the same J are unitarily equivalent, it will suffice to prove the lemma for the subfamily $H_{j}:=H_{J, j_{\min }}$. For $J_{1}, J_{2} \geqslant s_{1}+s_{2}$, define an isometric bijection $T\left(J_{1} \rightarrow J_{2}\right):=1 \otimes t\left(J_{1} \rightarrow J_{2}\right): \mathscr{H}_{J_{1}, j_{\text {min }}} \rightarrow \mathscr{H}_{J_{2}, j_{\text {min }}}$ by the identity on the radial factor and such that $t\left(J_{1} \rightarrow J_{2}\right)\left|J_{1} ; s m j_{\text {min }}\right\rangle=\left|J_{2} ; s m j_{\text {min }}\right\rangle$ (note that both dimensions $\mu_{J_{1}}\left(s_{1}, s_{2}\right), \mu_{J_{2}}\left(s_{1}, s_{2}\right)$ of $\mathscr{H}_{j_{1}, j_{\text {min }}}$ and $\mathscr{H}_{j_{2}, j_{\text {min }}}$ equal $\left.N\left(s_{1}, s_{2}\right)\right)$. And now let $\bar{H}_{J}:=T\left(J \rightarrow s_{1}+s_{2}\right) H_{J} T\left(s_{1}+s_{2} \rightarrow J\right)$. We claim that $J_{2}>J_{1} \Rightarrow \bar{H}_{J_{2}}>\bar{H}_{J_{1}}$. In fact, remembering [3, 4] that $H=p_{r}^{2}\left(:=-\partial^{2} / \partial r^{2}\right)+L^{2} r^{-2}+V(r)$ for (1) and using (5), (12), (15), the expectation value of \bar{H}_{J} in the state unit vector

$$
\begin{equation*}
\Phi:=\sum_{s m} f_{s m}(r)\left|s_{1}+s_{2} ; s m j_{\min }\right\rangle \in \mathscr{H}_{s_{1}+s_{2}, j_{\min }} \cap D\left(|H|^{1 / 2}\right) \tag{17}
\end{equation*}
$$

is given by:

$$
\begin{equation*}
\langle\Phi| \bar{H}_{j}|\Phi\rangle=\langle\Phi| p_{r}^{2}|\Phi\rangle+\langle\Phi| L^{2} r^{-2}|\Phi\rangle+\langle | V|\Phi\rangle \tag{18}
\end{equation*}
$$

with

$$
\begin{gather*}
\langle\Phi| p_{r}^{2}|\Phi\rangle=\sum_{s m} \int_{\mathbf{R}^{+}}\left|\partial f_{s m}(r) / \partial r\right|^{2} \mathrm{~d} r \tag{19}\\
\langle\Phi| L^{2} r^{-2}|\Phi\rangle=\sum_{s} \int_{\mathbf{R}^{+}}\left\langle f_{s}(r)\right| B(J, s)\left|f_{s}(r)\right\rangle r^{-2} \mathrm{~d} r \tag{20}\\
\langle\Phi| V|\Phi\rangle=\sum_{t_{1} t_{2} / \bar{s}_{2} \bar{s}_{1} m} \int_{\mathbb{R}^{+}} f_{s_{2} m}^{*}(r) v_{1_{1} t_{2}}(r) f_{s_{1} m}(r)\left\{\bar{s}_{2} m\left|V_{t_{1} t_{2}}\right| \bar{s}_{1} m\right\} \mathrm{d} r \tag{21}
\end{gather*}
$$

By $f_{s}(r)$ we abbreviate in (20) the vector in $\mathbb{C}^{2 s+1}$ with components $f_{s m}(r)$.
In view of lemma 1, and using (18)-(21), lemma 2 is now evident.
Theorem. Let $E_{\mathrm{g}}:=\inf \sigma(H) \in \sigma_{\text {disc }}(H), \mathscr{H}_{g}:=P_{H}\left(\left\{E_{\mathrm{g}}\right\}\right) \mathscr{H}$ be the ground energy and the associated eigensubspace for a quantum system consisting of two particles with spins s_{1}, s_{2} interacting through a rotationally invariant potential matrix. Then $\mathscr{H}_{g} \subset$ $\bigoplus_{j \leqslant s_{1}+s_{2}} \mathscr{H}_{j}$, i.e. the maximum intrinsic total angular momentum J_{g} of this system in any of its ground states satisfies $J_{g} \leqslant s_{1}+s_{2}$.
Proof. It is a clear consequence of lemma 2 that the lowest point $E_{0, J}:=\inf \sigma\left(H \mid \mathscr{H}_{J}\right)$ in the spectrum of the restriction of H to \mathscr{H}_{J} is a function strictly increasing with J for $J \geqslant s_{1}+s_{2}$. And as $E_{\mathrm{g}}=\inf _{J} E_{0, J}$, the conclusion plainly follows.

This work has been supported in part by the Spanish CICYT under grants number PB85-0037 and AE87-0030.2.

References

[1] Reed and M and Simon B 1978 Methods of Modern Mathematical Physics IV: Analysis of Operators (New York: Academic)
[2] Galindo A and Tarrach R 1987 Ann. Phys., NY 173430
[3] Reed M and Simon B 1975 Methods of Modern Mathematical Physics II: Fourier Analysis, Self-adjointness (New York: Academic)
[4] Galindo A and Pascual P 1989 Mecánica Cuántica I,II (Madrid: Eudema)
[5] Simon B 1982 Bull. Am. Math. Soc. 7447
[6] Biedenharn L C and Louck J D 1981 Angular Momentum in Quantum Physics (Encyclopedia of Mathematics 8) (Reading, MA: Addison-Wesley)

